1. Institute of Medicine. 1998. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: The National Academies Press. https://doi.org/10.17226/6015. https://www.nap.edu/read/6015/chapter/1
2. Xie F, Cheng Z, Li S, Liu X, Guo X, Yu P, Gu Z. Pharmacokinetic study of benfotiamine and the bioavailability assessment compared to thiamine hydrochloride. J Clin Pharmacol. 2014 Jun;54(6):688-95. doi: 10.1002/jcph.261. Epub 2014 Jan 22. PMID: 24399744. https://pubmed.ncbi.nlm.nih.gov/24399744/
3. Loew D. Pharmacokinetics of thiamine derivatives especially of benfotiamine. Int J Clin Pharmacol Ther. 1996 Feb;34(2):47-50. PMID: 8929745. https://pubmed.ncbi.nlm.nih.gov/8929745/
4. Lee BY, Yanamandra K, Bocchini JA Jr. Thiamin deficiency: a possible major cause of some tumors? (review). Oncol Rep. 2005 Dec;14(6):1589-92. PMID: 16273261. https://pubmed.ncbi.nlm.nih.gov/16273261/
5. siteleĭ [Thiamine and pyruvate Velichko MG, Ostrovskiĭ IuM, Trebukhina RV. Tiamin i obmen piruvata u krys-opukholenometabolism in tumor-bearing rats]. Vopr Med Khim. 1978 Mar-Apr;24(2):220-4. Russian. PMID: 664448. https://pubmed.ncbi.nlm.nih.gov/664448/
6. Sambon M, Wins P, Bettendorff L. Neuroprotective Effects of Thiamine and Precursors with Higher Bioavailability: Focus on Benfotiamine and Dibenzoylthiamine. Int J Mol Sci. 2021 May 21;22(11):5418. doi: 10.3390/ijms22115418. PMID: 34063830; PMCID: PMC8196556. https://pubmed.ncbi.nlm.nih.gov/34063830/
7. Hanberry, B.S., Berger, R. & Zastre, J.A. High-dose vitamin B1 reduces proliferation in cancer cell lines analogous to dichloroacetate. Cancer Chemother Pharmacol 73, 585–594 (2014). https://doi.org/10.1007/s00280-014-2386-z
8. Schmid U, Stopper H, Heidland A, Schupp N. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev. 2008 Jul-Aug;24(5):371-7. doi: 10.1002/dmrr.860. PMID: 18384109. https://pubmed.ncbi.nlm.nih.gov/18384109/
9. Shoeb M, Ramana KV. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic Biol Med. 2012;52(1):182-190. doi:10.1016/j.freeradbiomed.2011.10.444 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249497/
10. Fraser, D.A., Hessvik, N.P., Nikolić, N. et al. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations. Genes Nutr 7, 459–469 (2012). https://doi.org/10.1007/s12263-011-0252-8 https://genesandnutrition.biomedcentral.com/articles/10.1007/s12263-011-0252-8
11. Aziz, T. Effect of benfotiamine on hepatic tissue levels of free calcium, copper, iron and zinc during CCl4-induced hepatotoxicity in rats. Zanco J. Med. Sci., Vol. 15, No. (2), 2011. https://www.researchgate.net
12. Medical University of Vienna. "Vitamin B1 deficiency a key factor in the development of alcohol-related dementia: Hypothesis describes the role of iron deposits in the brain as the cause of dementia in alcoholics." ScienceDaily. ScienceDaily, 9 September 2020. https://www.sciencedaily.com/releases/2020/09/200909100248.htm
13. Balakumar P, Rohilla A, Krishan P, Solairaj P, Thangathirupathi A. The multifaceted therapeutic potential of benfotiamine. Pharmacol Res. 2010 Jun;61(6):482-8. doi: 10.1016/j.phrs.2010.02.008. Epub 2010 Feb 25. PMID: 20188835. https://pubmed.ncbi.nlm.nih.gov/20188835/
14. Kamanna VS, Ganji SH, Kashyap ML. The mechanism and mitigation of niacin-induced flushing. Int J Clin Pract. 2009 Sep;63(9):1369-77. doi: 10.1111/j.1742-1241.2009.02099.x. PMID: 19691622; PMCID: PMC2779993. https://pubmed.ncbi.nlm.nih.gov/19691622/
15. Sun WP, Li D, Lun YZ, Gong XJ, Sun SX, Guo M, Jing LX, Zhang LB, Xiao FC, Zhou SS. Excess nicotinamide inhibits methylation-mediated degradation of catecholamines in normotensives and hypertensives. Hypertens Res. 2012 Feb;35(2):180-5. doi: 10.1038/hr.2011.151. Epub 2011 Sep 15. PMID: 21918528. https://pubmed.ncbi.nlm.nih.gov/21918528/
16. Henderson AM, Aleliunas RE, Loh SP, Khor GL, Harvey-Leeson S, Glier MB, Kitts DD, Green TJ, Devlin AM. l-5-Methyltetrahydrofolate Supplementation Increases Blood Folate Concentrations to a Greater Extent than Folic Acid Supplementation in Malaysian Women. J Nutr. 2018 Jun 1;148(6):885-890. doi: 10.1093/jn/nxy057. PMID: 29878267. https://pubmed.ncbi.nlm.nih.gov/29878267/
17. Seremak-Mrozikiewicz A. Metafolina--alternatywa dla suplementacji niedoboru folianów u kobiet ciezarnych [Metafolin--alternative for folate deficiency supplementation in pregnant women]. Ginekol Pol. 2013 Jul;84(7):641-6. Polish. doi: 10.17772/gp/1618. PMID: 24032278. https://pubmed.ncbi.nlm.nih.gov/24032278/
18. Thakkar K, Billa G. Treatment of vitamin B12 deficiency-methylcobalamine? Cyancobalamine? Hydroxocobalamin?-clearing the confusion. Eur J Clin Nutr. 2015 Jan;69(1):1-2. doi: 10.1038/ejcn.2014.165. Epub 2014 Aug 13. PMID: 25117994. https://pubmed.ncbi.nlm.nih.gov/25117994/
19. Marsh EN, Meléndez GD. Adenosylcobalamin enzymes: theory and experiment begin to converge. Biochim Biophys Acta. 2012 Nov;1824(11):1154-64. doi: 10.1016/j.bbapap.2012.03.012. Epub 2012 Apr 3. PMID: 22516318; PMCID: PMC3580769. https://pubmed.ncbi.nlm.nih.gov/22516318/